Rainbow triangles in edge-colored graphs

Bo Ning

College of Cyber Science Nankai University Tianjin, 300350, China Email: bo.ning@nankai.edu.cn

Guangzhou Discrete Mathematics Seminar May 20th, 2022

▲ □ ▶ ▲ □ ▶ ▲

1 Introduction

- 2 Counting results for rainbow triangles
- 3 Warm-up and key lemmas
- 4 Rainbow triangles: sharing elements or disjoint?

5 Open problems

-∢ ≣ ▶

Introduction

Counting results for rainbow triangles Warm-up and key lemmas Rainbow triangles: sharing elements or disjoint? Open problems

Rainbow cycles in edge-colored graphs

- The main topic of this talk is presenting sufficient conditions for rainbow triangles in edge-colored graphs.
- Let G be an edge-colored graph. We call a subgraph H of G is rainbow if every two edges of H are assigned with distinct colors.
- This talk is based on the following papers of mine and my coauthors.

- Li, Binlong; **Ning, Bo**; Xu, Chuandong; Zhang, Shenggui, Rainbow triangles in edge-colored graphs. European J. Combin. 36 (2014), 453–459.
- Li, Ruonan; Ning, Bo; Zhang, Shenggui, Color degree sum conditions for rainbow triangles in edge-colored graphs. Graphs Combin. 32 (2016), no. 5, 2001–2008.
- Fujita, Shinya; **Ning, Bo**; Xu, Chuandong; Zhang, Shenggui, On sufficient conditions for rainbow cycles in edge-colored graphs. Discrete Math. 342 (2019), no. 7, 1956–1965.
- Li Xueliang, Ning Bo, Shi Yongtang, Zhang Shenggui, Counting rainbow triangles in edge-colored graphs, arXiv:2112.14458.

(日) (同) (日) (日)

Introduction

Counting results for rainbow triangles Warm-up and key lemmas Rainbow triangles: sharing elements or disjoint? Open problems

- To find a tight sufficient condition for a rainbow cycle in an edge-colored graph is an interesting problem in the area of rainbow subgraphs of edge-colored graphs.
- It is lucky for us to have the following beautiful theorem due to Hao Li.

Theorem (Hao Li, 2013)

Let G be an edge-colored graph. If $\delta^c \ge \frac{n+1}{2}$, then G contains a rainbow triangle.

▲ @ ▶ ▲ @ ▶ ▲

Introduction

Counting results for rainbow triangles Warm-up and key lemmas Rainbow triangles: sharing elements or disjoint? Open problems

- Li's theorem is originally a conjecture proposed by Hao Li and Guanghui Wang in 2006.
- In their 2009 published paper (EUJC, 2009), they obtained three weaker results.
- They also constructed example to show that for any positive integer *D*, there exists a class of graph with minimum color degree at least *D* but contains no rainbow cycle.

▲ □ ▶ ▲ 三 ▶ ▲

Binlong Li et al. in fact obtained two proofs of Li-Wang's conjecture.

Theorem (Li, Ning, Xu and Zhang, 2014)

Let G be an edge-colored graph on $n \ge 5$ vertices. If $\delta^c \ge \frac{n}{2}$, then G contains a rainbow triangle unless G is a properly-colored $K_{\frac{n}{2},\frac{n}{2}}$ where n is even.

Theorem (Li, Ning, Xu and Zhang, 2014)

Let G be an edge-colored graph on $n \ge 3$ vertices. If $\sum_{v \in V(G)} d^c(v) \ge \frac{(n+1)n}{2}$, then G contains a rainbow triangle.

(日) (同) (日) (日)

Introduction

Counting results for rainbow triangles Warm-up and key lemmas Rainbow triangles: sharing elements or disjoint? Open problems

Very interesting for us, Li et al. introduced a new type of sufficient condition for rainbow subgraphs in edge-colored graphs.

Theorem (Li, Ning, Xu and Zhang, 2014)

Let G be an edge-colored graph on $n \ge 3$ vertices. If $e(G) + c(G) \ge \frac{(n+1)n}{2}$, then G contains a rainbow triangle.

- < 同 > < 三 > < 三 >

Introduction

Counting results for rainbow triangles Warm-up and key lemmas Rainbow triangles: sharing elements or disjoint? Open problems

Remark

The term $\frac{(n+1)n}{2} = \binom{n}{2} + n$ here is meaningful. That is, we can write $\frac{(n+1)n}{2}$ as $\binom{n}{2} + ar(n, K_3)$.

Remark

Xu et al. extended the theorem above to rainbow cliques (EUJC, 2016) and properly-colored C_4 (DM, 2020).

Theorem (Xu, Hu, Wang, Zhang, 2016)

Let G be an edge-colored graph on n vertices and $n \ge k \ge 4$. If

$$e(G)+c(G)\geq \binom{n}{2}+t_{n,k-2}+2,$$

then G contains a rainbow K_k .

Theorem (Xu, Magnant, Zhang, 2020)

Let G be an edge-colored graph with order n. If

$$e(G)+c(G)\geq \frac{n(n+1)}{2},$$

then G contains a properly colored C_4 .

(日) (同) (三) (三)

Introduction

Counting results for rainbow triangles Warm-up and key lemmas Rainbow triangles: sharing elements or disjoint? Open problems

Xu et al.'s result confirmed the following conjecture for the case k = 3.

Conjecture (Manoussakis, Spyratos, Tuza, Voigt, 1996)

Let G be an edge-colored complete graph with order n. For $n > k \ge 2$, if

$$c(G) > \max\{n-k+\binom{k}{2}, \lfloor \frac{k}{3} \rfloor (n-\lfloor \frac{k}{3} \rfloor) + \binom{\lfloor \frac{k}{3} \rfloor}{3} + 1\},$$

then G contains a properly colored C_{k+1} .

< ロ > < 同 > < 三 > < 三

- The original purpose is to study the supersaturation problem of rainbow triangles in edge-colored graphs. This problem is obviously motivated by the study of supersaturation problem of triangles in graphs.
- It studies the following function: for triangle C₃ and for integers n, t ≥ 1, h_{C3}(n,t) = min{t(G) : |V(G)| = n, |E(G)| = ex(n, C₃) + t}, where t(G) is the number of C₃ in G and ex(n, C₃) is the Turán function of C₃.

- Improving Mantel's theorem, Rademacher (unpublished, 1955) proved that $h_{C_3}(n,1) \geq \lfloor \frac{n}{2} \rfloor$.
- Erdős (1962) proved that h_{C3}(n, k) ≥ k ⌊n/2 ⌋ where k ≤ cn for some constant c.
- In fact, Erdős conjectured that $h_{C_3}(n,k) \ge k \lfloor \frac{n}{2} \rfloor$ for all $k < \lfloor \frac{n}{2} \rfloor$, which was finally resolved by Lovász and Simonovits (1983).

(日) (同) (三) (三)

Theorem (Lovász and Simonovits, 1983)

Let G be a graph on n vertices. If $e(G) \ge \frac{n^2}{4} + k$ where $k < \lfloor \frac{n}{2} \rfloor$, then G contains at least $k \lfloor \frac{n}{2} \rfloor$ triangles.

A □ > A □ > A

- One can ask for a rainbow analog of the above Erdős' conjecture. In this direction, Ehard and Mohr answered an open problem proposed by Fujita, Ning, Xu and Zhang (DM, 2018).
- If we consider e(G) + c(G) as a variant of Turán function in edge-colored graphs, then the theorem above tells us that the supersaturation phenomenon of rainbow triangles under this type of condition is quite different from the original one.

Theorem (Ehard, Mohr, 2020)

There are at least k rainbow triangles in an edge-colored graph (G, C) such that $e(G) + c(G) \ge \binom{n+1}{2} + k - 1$.

(日) (同) (日) (日)

So it is natural for us to find a counting version of Hao Li's theorem.

Theorem (X. Li, Ning, Shi, Zhang, Dec. 2021)

Let (G, C) be an edge-colored graph on n vertices. Suppose that $\delta^{c}(G) \geq \frac{n+1}{2}$, and subject to this, e(G) is minimal. Then

$$rt(G) \geq \frac{e(G)(\overline{\sigma}_{2}^{c}(G)-n)}{3} + \frac{1}{6}\sum_{v \in V(G)} (n-d(v)-1)(d(v)-d^{c}(v)).$$

▲ @ ▶ ▲ @ ▶ ▲

As consequences of the above Theorem, we obtain two counting versions of Hao Li's theorem.

Theorem (X. Li, Ning, Shi, Zhang, Dec. 2021)

Let (G, C) be an edge-colored graph on n vertices. Then

$$rt(G) \geq \frac{1}{6}\delta^{c}(G)(2\delta^{c}(G)-n)n.$$

In particular, if $\delta^{c}(G) > cn$ for $c > \frac{1}{2}$, then

$$rt(G)\geq \frac{c(2c-1)}{6}n^3.$$

- < 同 > < 三 > < 三 >

One may wonder the tightness of above theorem The following example shows that it is the best possible.

Example

Let G be a rainbow k-partite Turán graph on n vertices where k|nand $k \ge 3$. Then there are exactly $\binom{k}{3} (\frac{n}{k})^3 = \frac{(k-1)(k-2)}{6k^2} n^3$ rainbow triangles. By our Theorem, there are at least $\binom{k}{3} (\frac{n}{k})^3 = \frac{(k-1)(k-2)}{6k^2} n^3$ rainbow triangles.

(日) (同) (日) (日)

Setting $\delta^{c}(G) = \frac{n+1}{2}$ in the Theorem, we obtain the right hand of the following.

Theorem (X. Li, Ning, Shi, Zhang, Dec. 2021) For even $n \ge 4$, we have $\frac{n^2}{4} \ge f(n) \ge \frac{n^2+2n}{6}$; for odd $n \ge 3$, we have $\frac{n^2-1}{8} \ge f(n) \ge \frac{n^2+n}{12}$.

we infer $f(n) = \Theta(n^2)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Example

Let (G, C) be a rainbow graph of order n where n is divisible by 4. Let $V(G) = X_1 \cup X_2$, $|X_1| = |X_2| = \frac{n}{2}$, and each of $G[X_1]$ and $G[X_2]$ consists of a perfect matching of size $\frac{n}{4}$. In addition, $G - E(X_1) - E(X_2)$ is balanced and complete bipartite. For each edge $e \in E(X_1)$, it is contained in exactly $\frac{n}{2}$ rainbow triangles. So does each edge in $G[X_2]$. Therefore, there are exactly $\frac{n^2}{4}$ rainbow triangles in G.

- 4 同 2 4 日 2 4 日 2

Example

Let (G, C) be a rainbow graph of order n where $n \equiv 1 \pmod{4}$. Let $V(G) = X_1 \cup X_2$, $|X_1| = \frac{n+1}{2}$ and $|X_2| = \frac{n-1}{2}$, and $G[X_1]$ consists of a perfect matching of size $\frac{n+1}{4}$. In addition, $G - E(X_1)$ is complete bipartite. For each edge $e \in E(X_1)$, it is contained in exactly $\frac{n-1}{2}$ rainbow triangles and so does each edge in $G[X_1]$. Therefore, there are exactly $\frac{n^2-1}{8}$ rainbow triangles in G.

・ロト ・ 同ト ・ ヨト ・ ヨト - -

In 2005, Broersma, X. Li, Woeginger, and Zhang proved a sufficient condition for rainbow short cycles.

Theorem (Broersma, X. Li, Woeginger, Zhang, 2005)

Let G be an edge-colored graph on $n \ge 4$ vertices. If $|CN(u) \cup CN(v)| \ge n-1$ for every pair of vertices $u, v \in V(G)$, then G contains a rainbow C_3 or a rainbow C_4 .

・ロト ・同ト ・ヨト ・ヨト

Broersma et al.'s theorem was generalized by Fujita, Ning, Xu and Zhang (DM, 2019) to the one forcing rainbow triangles under the same condition.

Theorem (Fujita, Ning, Xu, and Zhang, 2019)

Let G be an edge-colored graph on $n \ge 4$ vertices. If $|CN(u) \cup CN(v)| \ge n-1$ for every pair of vertices $u, v \in V(G)$, then G contains a rainbow C_3 , unless G is a properly-colored $K_{\frac{n}{2},\frac{n}{2}}$ where n is even.

(日) (同) (三) (

We extend both theorems mentioned to a counting version as follows.

Theorem (X. Li, Ning, Shi, Zhang, Dec. 2021+)

Let (G, C) be an edge-colored graph of order $n \ge 4$ such that $|CN(u) \cup CN(v)| \ge n$ for every pair of vertices $u, v \in V(G)$. Then G contains $\frac{n^2-2n}{24}$ rainbow C_3 's.

(日) (同) (三) (三)

As a warm-up, we first give the sketch of the proof of Hao Li's theorem.

- Let v be a vertex such that the maximum number, denoted by f = f(v), of monochromatic edges incident with v is maximum among all vertices of the graph.
- If f = 1, then G is rainbow and so contains a rainbow triangle. So assume $f \ge 2$.
- assume that $S = \{u_1, u_2, \ldots, u_f\} \subset N(v)$ with $C(vu_i) = c_0$ for any $1 \le i \le f$. Choose a maximum rainbow-neighborhood of v, denoted by $T = \{x_1, x_2, x_3, \ldots, x_k\}$ such that $C(vx_i) = c_i$ and $c_i \ne c_0$ for $1 \le i \le k$. Thus, $c_0, c_1, c_2, \ldots, c_k$ are pairwise distinct.

- Since G has no rainbow triangle, either C(x_ix_j) = C(vx_i) = c_i or C(x_ix_j) = C(vx_j) = c_j for any x_ix_j ∈ E(G) with 1 ≤ i ≤ k and 1 ≤ j ≤ k. Similarly, if there is an edge u_ix_j, its color is either c₀ or c_j (can be improved!!).
- We define an oriented graph D(T, A(D)) as follows: V(D) = T and $A(D) = \{x_i x_j : x_i x_j \in E(G[T]) \text{ and } C(x_i x_j) = c_j\}$
- for any *i*, x_i has at least $d^c(x_i) (d_D^+(x_i) + |\{c_i\}|)$ distinct neighbors in $G (S \cup T \cup \{v\})$.

< 同 > < 三 > < 三 >

we have

$$n \geq |S \cup T \cup \{v\}| + d^{c}(x_{i}) - (d^{+}_{D}(x_{i}) + 1),$$

and it follows that $d_D^+(x_i) \ge f$.

• We also have $d_D^-(x_i) \le f - 1$. A contradiction!

This completes the proof of Li's theorem.

Our proof of main counting result is based on two main lemmas.

Lemma (X. Li, Ning, Shi, Zhang, Dec. 2021+)

Let (G, C) be an edge-colored graph on n vertices with $\delta^{c}(G) \geq \frac{n+1}{2}$ and furthermore, e(G) is minimal. Then for each $v \in V(G)$, we have

$$egin{aligned} &rt(G;v) \geq rac{1}{2}((n-d(v)-1)(d(v)-d^c(v))) \ &+ \sum_{1 \leq j \leq d^c(v)} \sum_{a \in N_j(v)} (d_j(v)-d_j(a)) \ &+ \sum_{a \in N_i} (d^c(v)+d^c(a)-n)). \end{aligned}$$

▲ □ ▶ ▲ □ ▶ ▲

Lemma (X. Li, Ning, Shi, Zhang, Dec. 2021+)

Let (G, C) be an edge-colored graph with vertex set V(G) and $\delta^{c}(G) \geq \frac{n+1}{2}$, and furthermore, e(G) is minimal. Let $I_{v} = \{C(uv) : uv \in E(G)\}$. For $k \in I_{v}$, $N_{k}(v) := \{u \in N_{v} : C(uv) = k\}$ and $d_{k}(v) := |N_{k}(v)|$. Then

$$\sum_{\nu \in V(G)} \sum_{k \in I_{\nu}} \sum_{a \in N_{k}(\nu)} (d_{k}(\nu) - d_{k}(a)) = 0.$$
 (1)

Note that in the proof of Lemma, without loss of generality, we assume that $I_v = \{1, 2, ..., d^c(v)\}$ for simply. In fact, for distinct vertices $u, v \in V(G)$, I_u may be not equal to I_v , and may be not a subset of [1, C(G)].

The friendship graph F_k is a graph consisting of k triangles sharing a common vertex. Finally, we obtain some color degree condition for the existence of some rainbow triangles sharing one common vertex, i.e., the underlying graph is a friendship subgraph. This extends Theorem 1 in another way.

Theorem (X. Li, Ning, Shi, Zhang, Dec. 2021+)

Let $k \ge 2$ and $n \ge 50k^2$. Let (G, C) be an edge-colored graph on n vertices. If $\delta^c(G) \ge \frac{n}{2} + k - 1$ then G contains k rainbow triangles sharing one common vertex.

・ロト ・同ト ・ヨト ・ヨト

The following conjecture is due to Hu, Li and Yang (DM, 2020). I like this conjecture very much.

Conjecture

Let G be an edge-colored graph on $n \ge 3k$ vertices. If $\delta^c \ge \frac{n+k}{2}$, then G contains k disjoint rainbow triangles.

A (1) > A (1) > A

• We highly suspect the tight one is $\frac{n+1}{2}$ for $n = \Omega(k^2)$.

On the other hand, maybe an answer to the following is positive.

Problem

Let n, k be two positive integers. Let (G, C) be an edge-colored graph on n vertices with $\delta^{c}(G) \geq \frac{n+1}{2}$. Does there exist a constant c, such that if $n \geq ck$ then G contains a properly-colored F_k ?

Recall that $f(n) := \min\{rt(G) : G \in \mathcal{G}_n^*\}$. We conclude this paper with the following more feasible problem.

Problem

Determine the value of $\lim_{n\to\infty} \frac{f(n)}{n^2}$.

(日) (同) (三) (

We left two major problems to the young students full of vigour.

Problem

Find a good out-degree condition for disjoint directed triangles in oriented graphs.

Problem

Find a good sufficient condition for the existence of rainbow cycles in edge-colored graphs.

Theorem (Tomon, 2022; a corollary of Wang, 2022)

Suppose G is a properly edge colored graph on n vertices with average degree at least $(logn)^{2+o(1)}$. Then G contains a rainbow cycle.

Thank you for your attention!